Lipschitz inverse shadowing for non-singular flows

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous and Inverse Shadowing for Flows

We define continuous and inverse shadowing for flows and prove some properties. In particular, we will prove that an expansive flow without fixed points on a compact metric space which is a shadowing is also a continuous shadowing and hence an inverse shadowing (on a compact manifold without boundary).

متن کامل

Continuous Inverse Shadowing and Hyperbolicity

We study the concepts of continuous shadowing and continuous inverse shadowing with respect to various classes of admissible pseudo orbits, and characterize hyperbolicity and structural stability using the notion of continuous inverse shadowing.

متن کامل

Weak Inverse Shadowing and Genericity

We study the genericity of the first weak inverse shadowing property and the second weak inverse shadowing property in the space of homeomorphisms on a compact metric space, and show that every shift homeomorphism does not have the first weak inverse shadowing property but it has the second weak inverse shadowing property.

متن کامل

Lipschitz Distributions and Anosov Flows

We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...

متن کامل

Various Inverse Shadowing in Linear Dynamical Systems

We give characterizations of linear dynamical systems via various inverse shadowing properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dynamical Systems

سال: 2013

ISSN: 1468-9367,1468-9375

DOI: 10.1080/14689367.2013.842958